Part Number Hot Search : 
ACTF433 MAX171 SL102 STR4A80 IRG4BC MC30A BC557 CM15010
Product Description
Full Text Search
 

To Download RD74VT1G245 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  rev.1.00 jan. 13, 2005 page 1 of 13 RD74VT1G245 bus transceiver with 3?state output / dual supply voltage translator rej03d0494?0100 rev.1.00 jan. 13, 2005 description the RD74VT1G245 has one buffer in a 6 pin package. when dir is high, data is transferred from the a inputs to the b outputs, and when dir is low, data is transferred from the b inputs to the a outputs. and this product has two terminals (v cca , v ccb ), v cca is connected with control input and a bus side v ccb is connected with b bus side. v cca and v ccb are isolated. the a port is designed to track v cca , which accepts voltages from 1. 2v to 3.6v, and the b port is designed to track v ccb , which operation at 1.2v to 3.6v. therefore, bidirectional board voltage conversion is possible. low voltage and high-speed operation is suitable for the battery powered products (e.g., notebook computers), and the low power consumption extends the battery life. features ? this product function as level shift transceiver that change v cca input level to v ccb output level, v ccb input level to v cca output level by providing different supply voltage to v cca and v ccb . ? supply voltage range: v cca = 1.2 to 3.6 v v ccb = 1.2 to 3.6 v ? operating temperature range: ? 40 to +85c ? control input v i(max) = 3.6 v (@v cca = 0 to 3.6 v) ? a bus side input outputs v i/o (max) = 3.6 v (@v cca = 0 v or output off state) ? b bus side input outputs v i/o (max) = 3.6 v (@v ccb = 0 v or output off state) ? high output current a bus side: 2 ma (@v cca = 1.2 v) b bus side: 2 ma (@v ccb = 1.2 v) 4 ma (@v cca = 1.50.1 v) 4 ma (@v ccb = 1.50.1 v) 6 ma (@v cca = 1.80.15 v) 6 ma (@v ccb = 1.80.15 v) 18 ma (@v cca = 2.50.2 v) 18 ma (@v ccb = 2.50.2 v) 24 ma (@v cca = 3.30.3 v) 24 ma (@v ccb = 3.30.3 v) ? ordering information part name package type package code package abbreviation taping abbreviation (quantity) RD74VT1G245cle wcsp?6 pin tbs?6av cl e (3,000 pcs/reel)
RD74VT1G245 rev.1.00 jan. 13, 2005 page 2 of 13 article indication v y y m marking year code month code function table inputs dir operation l b a h a b h: high level l: low level pin arrangement (bottom view) (top view) b 16 2 34 gnd height 0.5 mm 0.5 mm pitch 0.23 mm 6?ball (cl) 0.9 mm 1.4 mm av ccb dir v cca 5 pin#1 index
RD74VT1G245 rev.1.00 jan. 13, 2005 page 3 of 13 logic diagram a b dir absolute maximum ratings item symbol ratings unit conditions supply voltage range v cca , v ccb ?0.5 to 4.6 v input voltage range *1 v i ?0.5 to 4.6 v dir ?0.5 to v cca +0.5 a port output: ?h? or ?l? ?0.5 to 4.6 a port output: ?z? or v cca : off ?0.5 to v ccb +0.5 b port output: ?h? or ?l? input/output voltage range *1, 2 v i/o ?0.5 to 4.6 v b port output: ?z? or v ccb : off input clamp current i ik ?50 ma v i < 0 ?50 v o < 0 output clamp current i ok 50 ma v o > v cc +0.5 continuous output current i o 50 ma continuous output current v cc or gnd i cca , i ccb , i gnd 100 ma package thermal impedance ja 123 c/w storage temperature tstg ?65 to 150 c notes: the absolute maximum ratings are values, which mu st not individually be exceeded, and furthermore, no two of which may be realized at the same time. 1. the input and output voltage rati ngs may be exceeded if the input and output clamp-current ratings are observed. 2. this value is limited to 4.6 v maximum.
RD74VT1G245 rev.1.00 jan. 13, 2005 page 4 of 13 recommended operating conditions item symbol ratings unit conditions v cca 1.2 to 3.6 supply voltage range v ccb 1.2 to 3.6 v v i 0 to 3.6 v dir 0 to 3.6 a port output: ?h? or ?l? 0 to v cca a port output: ?z? or v cca : off 0 to 3.6 b port output: ?h? or ?l? input/output voltage v i/o 0 to v ccb v b port output: ?z? or v ccb : off ?2 v cca = 1.2 v ?4 v cca = 1.50.1 v ?6 v cca = 1.80.15 v ?18 v cca = 2.50.2 v i oha ?24 ma v cca = 3.30.3 v ?2 v ccb = 1.2 v ?4 v ccb = 1.50.1 v ?6 v ccb = 1.80.15 v ?18 v ccb = 2.50.2 v i ohb ?24 ma v ccb = 3.30.3 v 2 v cca = 1.2 v 4 v cca = 1.50.1 v 6 v cca = 1.80.15 v 18 v cca = 2.50.2 v i ola 24 ma v cca = 3.30.3 v 2 v ccb = 1.2 v 4 v ccb = 1.50.1 v 6 v ccb = 1.80.15 v 18 v ccb = 2.50.2 v output current i olb 24 ma v ccb = 3.30.3 v input transition rise or fall time ? t / ? v 10 ns / v operation free-air temperature ta ?40 to 85 c
RD74VT1G245 rev.1.00 jan. 13, 2005 page 5 of 13 electrical characteristics (ta = ? 40 to 85c) item symbol v cca (v) * v ccb (v) * min typ max unit test conditions 1.2 v cca 0.75 ? ? 1.50.1 v cca 0.70 ? ? 1.80.15 v cca 0.65 ? ? 2.50.2 1.6 ? ? v iha 3.30.3 1.2 to 3.6 2.0 ? ? v a port control input 1.2 v ccb 0.75 ? ? 1.50.1 v ccb 0.70 ? ? 1.80.15 v ccb 0.65 ? ? 2.50.2 1.6 ? ? v ihb 1.2 to 3.6 3.30.3 2.0 ? ? v b port 1.2 ? ? v cca 0.25 1.50.1 ? ? v cca 0.30 1.80.15 ? ? v cca 0.35 2.50.2 ? ? 0.7 v ila 3.30.3 1.2 to 3.6 ? ? 0.8 v a port control input 1.2 ? ? v ccb 0.25 1.50.1 ? ? v ccb 0.30 1.80.15 ? ? v ccb 0.35 2.50.2 ? ? 0.7 input voltage v ilb 1.2 to 3.6 3.30.3 ? ? 0.8 v b port 1.2 to 3.6 1.2 to 3.6 v cc ? 0.2 ? ? i oh = ?100 a 1.2 1.2 0.9 ? ? i oh = ?2 ma 1.50.1 1.50.1 1.1 ? ? i oh = ?4 ma 1.80.15 1.80.15 1.25 ? ? i oh = ?6 ma 2.50.2 2.50.2 1.7 ? ? i oh = ?18 ma v oh 3.30.3 3.30.3 2.2 ? ? v i oh = ?24 ma 1.2 to 3.6 1.2 to 3.6 ? ? 0.2 i ol = 100 a 1.2 1.2 ? ? 0.3 i ol = 2 ma 1.50.1 1.50.1 ? ? 0.3 i ol = 4 ma 1.80.15 1.80.15 ? ? 0.3 i ol = 6 ma 2.50.2 2.50.2 ? ? 0.6 i ol = 18 ma output voltage v ol 3.30.3 3.30.3 ? ? 0.55 v i ol = 24 ma input current i in 3.6 3.6 ?1.5 ? 1.5 a v in = gnd or v cca control input off state output current i oz 3.6 3.6 ?1.5 ? 1.5 a v in = v ih or v il output leakage current i off 0 0 ? ? 1.5 a v in , v out = 0 to 3.6 v i cca 1.2 to 3.6 1.2 to 3.6 ?3.0 ? 3.0 i o(a port) = 0 v in = v ccb or gnd quiescent supply current i ccb 1.2 to 3.6 1.2 to 3.6 ?3.0 ? 3.0 a i o(b port) = 0 v in = v cca or gnd ? i cca 3.6 3.6 ? ? 250 a port or control v cca ?0.6 (1 input) increase in icc per input ? i ccb 3.6 3.6 ? ? 250 a b port v ccb ?0.6 (1 input) input capacitance c in 3.3 3.3 ? 3.5 ? pf v in = v cc or gnd input/output capacitance c i/o 3.3 3.3 ? 6.0 ? pf v o = v cc or gnd note: for conditions shown as min or max, use the appr opriate values under recommended operating conditions.
RD74VT1G245 rev.1.00 jan. 13, 2005 page 6 of 13 switching characteristics v cca = 3.30.3 v ta = ?40 to 85c v ccb = 1.2 v v ccb = 1.50.1 v v ccb = 1.80.15 v v ccb = 2.50.2 v v ccb = 3.30.3 v item symbol from (input) to (output) typ min max min max min max min max unit test conditions t plh 9.1 2.0 8.8 1.5 5. 8 1.0 4.0 1.0 3.2 t phl a b 9.1 2.0 8.8 1.5 5. 8 1.0 4.0 1.0 3.2 t plh 4.0 1.0 4.2 1.0 3. 8 1.0 3.4 1.0 3.2 propagation delay time t phl b a 4.0 1.0 4.2 1.0 3. 8 1.0 3.4 1.0 3.2 ns c l = 15pf r l = 2.0k ? t hz 4.0 1.0 4.5 1.0 4. 5 1.0 4.5 1.0 4.5 t lz dir a 4.0 1.0 4.5 1.0 4. 5 1.0 4.5 1.0 4.5 t hz 11.2 2.0 10.2 1.5 8. 0 1.0 6.0 1.0 5.5 output disable time t lz dir b 11.2 2.0 10.2 1.5 8. 0 1.0 6.0 1.0 5.5 ns c l = 15pf r l = 2.0k ? t zh *1 15.2 ? 14.4 ? 11.8 ? 9.4 ? 8.7 t zl *1 dir a 15.2 ? 14.4 ? 11.8 ? 9.4 ? 8.7 t zh *1 13.1 ? 13.3 ? 10.3 ? 8.5 ? 7.7 output enable time t zl *1 dir b 13.1 ? 13.3 ? 10.3 ? 8.5 ? 7.7 ns c l = 15pf r l = 2.0k ? note: 1. the enable time is a calculated value, derived us ing the formula shown in the section entitled enable times on page 12. v cca = 2.50.2 v ta = ?40 to 85c v ccb = 1.2 v v ccb = 1.50.1 v v ccb = 1.80.15 v v ccb = 2.50.2 v v ccb = 3.30.3 v item symbol from (input) to (output) typ min max min max min max min max unit test conditions t plh 9.5 2.0 9.2 1.5 6. 0 1.0 4.2 1.0 3.4 t phl a b 9.5 2.0 9.2 1.5 6. 0 1.0 4.2 1.0 3.4 t plh 4.7 1.0 4.8 1.0 4. 6 1.0 4.2 1.0 4.0 propagation delay time t phl b a 4.7 1.0 4.8 1.0 4. 6 1.0 4.2 1.0 4.0 ns c l = 15pf r l = 2.0k ? t hz 4.2 1.0 4.7 1.0 4. 7 1.0 4.7 1.0 4.7 t lz dir a 4.2 1.0 4.7 1.0 4. 7 1.0 4.7 1.0 4.7 t hz 11.2 2.0 10.6 1.5 8. 4 1.0 6.0 1.0 6.0 output disable time t lz dir b 11.2 2.0 10.6 1.5 8. 4 1.0 6.0 1.0 6.0 ns c l = 15pf r l = 2.0k ? t zh *1 15.9 ? 15.4 ? 13.0 ? 10.2 ? 10.0 t zl *1 dir a 15.9 ? 15.4 ? 13.0 ? 10.2 ? 10.0 t zh *1 13.7 ? 13.9 ? 10.7 ? 8.9 ? 8.1 output enable time t zl *1 dir b 13.7 ? 13.9 ? 10.7 ? 8.9 ? 8.1 ns c l = 15pf r l = 2.0k ? note: 1. the enable time is a calculated value, derived us ing the formula shown in the section entitled enable times on page 12.
RD74VT1G245 rev.1.00 jan. 13, 2005 page 7 of 13 switching characteristics (cont.) v cca = 1.8 0.15 v ta = ?40 to 85c v ccb = 1.2 v v ccb = 1.50.1 v v ccb = 1.80.15 v v ccb = 2.50.2 v v ccb = 3.30.3 v item symbol from (input) to (output) typ min max min max min max min max unit test conditions t plh 9.8 2.0 9.6 1.5 6. 5 1.0 4.6 1.0 3.8 t phl a b 9.8 2.0 9.6 1.5 6. 5 1.0 4.6 1.0 3.8 t plh 6.4 1.5 7.2 1.5 6. 5 1.5 6.0 1.5 5.8 propagation delay time t phl b a 6.4 1.5 7.2 1.5 6. 5 1.5 6.0 1.5 5.8 ns c l = 15pf r l = 2.0k ? t hz 5.5 1.5 7.5 1.5 7. 5 1.5 7.5 1.5 7.5 t lz dir a 5.5 1.5 7.5 1.5 7. 5 1.5 7.5 1.5 7.5 t hz 12.0 2.0 11.5 1.5 9. 2 1.0 7.2 1.0 7.0 output disable time t lz dir b 12.0 2.0 11.5 1.5 9. 2 1.0 7.2 1.0 7.0 ns c l = 15pf r l = 2.0k ? t zh *1 18.4 ? 18.7 ? 15.7 ? 13.2 ? 12.8 t zl *1 dir a 18.4 ? 18.7 ? 15.7 ? 13.2 ? 12.8 t zh *1 15.3 ? 17.1 ? 14.0 ? 12.1 ? 11.3 output enable time t zl *1 dir b 15.3 ? 17.1 ? 14.0 ? 12.1 ? 11.3 ns c l = 15pf r l = 2.0k ? note: 1. the enable time is a calculated value, derived us ing the formula shown in the section entitled enable times on page 12. v cca = 1.5 0.1 v ta = ?40 to 85c v ccb = 1.2 v v ccb = 1.50.1 v v ccb = 1.80.15 v v ccb = 2.50.2 v v ccb = 3.30.3 v item symbol from (input) to (output) typ min max min max min max min max unit test conditions t plh 10.0 2.0 10.5 1.5 7. 2 1.0 4.8 1.0 4.2 t phl a b 10.0 2.0 10.5 1.5 7. 2 1.0 4.8 1.0 4.2 t plh 8.0 2.0 10.5 2.0 9. 6 2.0 9.2 2.0 8.8 propagation delay time t phl b a 8.0 2.0 10.5 2.0 9. 6 2.0 9.2 2.0 8.8 ns c l = 15pf r l = 2.0k ? t hz 6.0 2.0 10.0 2.0 10. 0 2.0 10.0 2.0 10.0 t lz dir a 6.0 2.0 10.0 2.0 10. 0 2.0 10.0 2.0 10.0 t hz 12.5 2.0 12.7 1.5 12. 0 1.0 10.7 1.0 7.5 output disable time t lz dir b 12.5 2.0 12.7 1.5 12. 0 1.0 10.7 1.0 7.5 ns c l = 15pf r l = 2.0k ? t zh *1 20.5 ? 23.2 ? 21.6 ? 19.9 ? 16.3 t zl *1 dir a 20.5 ? 23.2 ? 21.6 ? 19.9 ? 16.3 t zh *1 16.0 ? 20.5 ? 17.2 ? 14.8 ? 14.2 output enable time t zl *1 dir b 16.0 ? 20.5 ? 17.2 ? 14.8 ? 14.2 ns c l = 15pf r l = 2.0k ? note: 1. the enable time is a calculated value, derived us ing the formula shown in the section entitled enable times on page 12.
RD74VT1G245 rev.1.00 jan. 13, 2005 page 8 of 13 switching characteristics (cont.) v cca = 1.2 v ta = ?40 to 85c v ccb = 1.2 v v ccb = 1.50.1 v v ccb = 1.80.15 v v ccb = 2.50.2 v v ccb = 3.30.3 v item symbol from (input) to (output) typ typ typ typ typ unit test conditions t plh 10.5 8.0 6.4 4.7 4.0 t phl a b 10.5 8.0 6.4 4.7 4.0 t plh 10.5 10.0 9.8 9.5 9.1 propagation delay time t phl b a 10.5 10.0 9.8 9.5 9.1 ns c l = 15pf r l = 2.0k ? t hz 8.0 8.0 8.0 8.0 8.0 t lz dir a 8.0 8.0 8.0 8.0 8.0 t hz 13.5 10.5 9.5 7.5 7.5 output disable time t lz dir b 13.5 10.5 9.5 7.5 7.5 ns c l = 15pf r l = 2.0k ? t zh *1 24.0 20.5 19.3 17.0 16.6 t zl *1 dir a 24.0 20.5 19.3 17.0 16.6 t zh *1 18.5 16.0 14.4 12.7 12.0 output enable time t zl *1 dir b 18.5 16.0 14.4 12.7 12.0 ns c l = 15pf r l = 2.0k ? note: 1. the enable time is a calculated value, derived us ing the formula shown in the section entitled enable times on page 12. operating characteristics ta = 25c item symbol v cca (v) v ccb (v) min typ max unit test conditions power dissipation capacitance c pd 3.3 3.3 ? 12 ? pf f = 10 mhz c l = 0 power?up considerations level?translation devices offer an opportunity for successful mixed?voltage signal design. a proper power?up sequence always should be followed to a void excessive supply current, bus contention, oscillations, or other anomalies caused by improperly biased device pins. take these precautions to guard against such power?up problems. 1. connect ground before any supply voltage is applied. 2. next, power up the control side of the device. (power up of v cca is first. next power up is v ccb ) 3. depending on the direction of the data path, dir can be high or low. if dir high is needed (a data to b bus), ramp it with v cca . otherwise, dir low is needed (b data to a bus), ramp it with gnd.
RD74VT1G245 rev.1.00 jan. 13, 2005 page 9 of 13 test circuit open s1 c l = 15 pf *1 2 k ? load circuit for outputs 2 k ? see under table gnd symbol t / t plh phl t / t zh hz t / t zl lz s1 open gnd note: 1. c l includes probe and jig capacitance. 2 v cc
RD74VT1G245 rev.1.00 jan. 13, 2005 page 10 of 13 v ref v ref v ref v ref input output  waveforms ? 1  waveforms ? 2 v h v l t zl t lz t phl t zh t hz v oh v ol output a or b waveform?1 output a or b waveform?2 input dir gnd v ih t plh v oh v ol v oh v ol tr 10 % 10 % 10 % 10 % 90 % 90 % 90 % 90 % tf v ref v ref v ref v ref gnd v ih tr 10 % 10 % 90 % 90 % tf notes: 1. input waveform : prr 10 mhz, zo = 50 ? , duty cycle 50%. 2. waveform ? 1 is for an output with internal conditions such that the output is low except when disabled by the output control. 3. waveform ? 2 is for an output with internal conditions such that the output is high except when disabled by the output control. 4. the output are measured one at a time with one transition per measurement. v ref v / v hl v ih t / t rf v h = v oh -0.15 v v l = v ol +0.15 v v h = v oh -0.1 v v l = v ol +0.1 v v h = v oh -0.15 v v l = v ol +0.15 v v h = v oh -0.3 v v l = v ol +0.3 v v cc v cc v cc 1/2 v cc 1/2 v cc 1/2 v cc 1/2 v cc v cc 2.0 ns 2.0 ns 2.0 ns 2.0 ns v = 2.5 0.2 v cc v = 3.3 0.3 v cc v = 1.8 0.15 v cc v = 1.2 v, 1.5 0.1 v cc symbol
RD74VT1G245 rev.1.00 jan. 13, 2005 page 11 of 13 application information figure 1 is an example circuit of the RD74VT1G245 being used in a bidirectional logic level?shifting application. 6 1 5 4 2 3 system?1 system?2 v cc1 v cc1 v cc2 v cc2 figure 1. bidirectional logic level?shifting application pin description pin name function description 1 dir dir the gnd (low?level) dete rmines b?port to a?port direction 2 a out output level depends on v cc1 voltage 3 gnd gnd device gnd 4 b in input threshold value depends on v cc2 voltage 5 v ccb v cc2 system?2 supply voltage (1.2v to 3.6v) 6 v cca v cc1 system?1 supply voltage (1.2v to 3.6v)
RD74VT1G245 rev.1.00 jan. 13, 2005 page 12 of 13 application information (cont.) figure 2 shows the RD74VT1G245 used in a bidirectional logic level?shifting application. since the RD74VT1G245 does not have an output enable (oe) pin, the system designer should take pr ecautions to avoid bus contention between system?1 and system?2 when changing directions. 6 1 5 4 2 3 system?1 system?2 pullup/down or bus?hold* dir ctrl i/o?1 i/o?2 v cc1 v cc1 v cc2 pullup/down or bus?hold* v cc2 notes: following is a sequence that illustrates data transmission from system?1 to system?2 and then from system?2 to system?1. 3 4 2 1 l hi?z system?2 is getting ready to send data to system?1. i/o?1 and i/o?2 are disabled. the bus?line state depends on pull?up or down.* dir bit is flipped. i/o?1 and i/o?2 are atill disabled. the bus?line state depends on pull?up or down.* h in h system?1 data to system?2 system?2 data to system?1 hi?z out hi?z out hi?z in l i/o?2 description i/o?1 dir ctrl state *: system?1 and system?2 must use same conditions, i.e., both pull?up or both pull?down. figure 2. bidirectional logic level-shifting application calculate the enable times for the RD74VT1G245 using the following formulas: 1. t zh (dir to a) = t lz (dir to b) + t plh (b to a) 2. t zl (dir to a) = t hz (dir to b) + t phl (b to a) 3. t zh (dir to b) = t lz (dir to a) + t plh (a to b) 4. t zl (dir to b) = t hz (dir to a) + t phl (a to b) in a bidirectional application, these enable times provide the maximum delay from the time the dir bit is switched until an output is expected. for example, if the RD74VT1G245 initially is transmitting from a to b, then the dir bit is switched, the b port of the device must be disabled before presenting it with an input. after the b port has been disabled, an input signal applied to it appears on the corresponding a port after the specified propagation delay.
RD74VT1G245 rev.1.00 jan. 13, 2005 page 13 of 13 package dimensions tbs-6av eiaj package code jedec code mass (g) lead material 0.001 ?? ? symbol dimension in millimeters min nom max a 0.50 0.185 (0.315)* 0.05 0.05 0.20 0.25 0.90 1.40 0.50 0.20 0.20 0.20 0.155 a 1 a 2 b d e e x y 1 y zd ze e e d zd ze e a1 a2 a c b a 12 pin #1 index area c c b seating plane 6 b c x m a b c x m y 1 // c y c *reference value.
keep safety first in your circuit designs! 1. renesas technology corp. puts the maximum effort into making semiconductor products better and more reliable, but there is al ways the possibility that trouble may occur with them. trouble with semiconductors may lead to personal injury, fire or property damage. remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. notes regarding these materials 1. these materials are intended as a reference to assist our customers in the selection of the renesas technology corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to renesas t echnology corp. or a third party. 2. renesas technology corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating i n the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. all information contained in these materials, including product data, diagrams, charts, programs and algorithms represents in formation on products at the time of publication of these materials, and are subject to change by renesas technology corp. without notice due to product improvement s or other reasons. it is therefore recommended that customers contact renesas technology corp. or an authorized renesas technology corp. product distrib utor for the latest product information before purchasing a product listed herein. the information described here may contain technical inaccuracies or typographical errors. renesas technology corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or e rrors. please also pay attention to information published by renesas technology corp. by various means, including the renesas technolo gy corp. semiconductor home page (http://www.renesas.com). 4. when using any or all of the information contained in these materials, including product data, diagrams, charts, programs, an d algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. renesas technology corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. renesas technology corp. semiconductors are not designed or manufactured for use in a device or system that is used under cir cumstances in which human life is potentially at stake. please contact renesas technology corp. or an authorized renesas technology corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerosp ace, nuclear, or undersea repeater use. 6. the prior written approval of renesas technology corp. is necessary to reprint or reproduce in whole or in part these materia ls. 7. if these products or technologies are subject to the japanese export control restrictions, they must be exported under a lice nse from the japanese government and cannot be imported into a country other than the approved destination. any diversion or reexport contrary to the export control laws and regulations of japan and/or the country of destination is pro hibited. 8. please contact renesas technology corp. for further details on these materials or the products contained therein. sales strategic planning div. nippon bldg., 2-6-2, ohte-machi, chiyoda-ku, tokyo 100-0004, japan http://www.renesas.com refer to " http://www.renesas.com/en/network " for the latest and detailed information. renesas technology america, inc. 450 holger way, san jose, ca 95134-1368, u.s.a tel: <1> (408) 382-7500, fax: <1> (408) 382-7501 renesas technology europe limited dukes meadow, millboard road, bourne end, buckinghamshire, sl8 5fh, u.k. tel: <44> (1628) 585-100, fax: <44> (1628) 585-900 renesas technology hong kong ltd. 7th floor, north tower, world finance centre, harbour city, 1 canton road, tsimshatsui, kowloon, hong kong tel: <852> 2265-6688, fax: <852> 2730-6071 renesas technology taiwan co., ltd. 10th floor, no.99, fushing north road, taipei, taiwan tel: <886> (2) 2715-2888, fax: <886> (2) 2713-2999 renesas technology (shanghai) co., ltd. unit2607 ruijing building, no.205 maoming road (s), shanghai 200020, china tel: <86> (21) 6472-1001, fax: <86> (21) 6415-2952 renesas technology singapore pte. ltd. 1 harbour front avenue, #06-10, keppel bay tower, singapore 098632 tel: <65> 6213-0200, fax: <65> 6278-8001 renesas sales offices ? 2005. renesas technology corp., all rights reserved. printed in japan. colophon .2.0


▲Up To Search▲   

 
Price & Availability of RD74VT1G245

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X